Movendo Hardware Médio


O Guia de cientistas e engenheiros para processamento de sinal digital Por Steven W. Smith, Ph. D. Capítulo 15: Filtros médios móveis Parentes do filtro de média móvel Em um mundo perfeito, os designers de filtros só precisam lidar com informações codificadas no domínio do tempo ou no domínio da freqüência, mas nunca uma mistura dos dois no mesmo sinal. Infelizmente, existem algumas aplicações em que ambos os domínios são simultaneamente importantes. Por exemplo, sinais de televisão se enquadram nesta categoria desagradável. As informações de vídeo são codificadas no domínio do tempo, ou seja, a forma da forma de onda corresponde aos padrões de brilho na imagem. No entanto, durante a transmissão, o sinal de vídeo é tratado de acordo com sua composição de freqüência, como sua largura de banda total, como as ondas de suporte para cor de amplificador de som são adicionadas, restauração de amplificação de eliminação do componente de CC, etc. Como outro exemplo, interferência eletromagnética É melhor entendido no domínio de freqüência, mesmo que a informação de sinais seja codificada no domínio do tempo. Por exemplo, o monitor de temperatura em uma experiência científica pode estar contaminado com 60 hertz das linhas de energia, 30 kHz de uma fonte de alimentação de comutação ou 1320 kHz de uma estação de rádio AM local. Parentes do filtro de média móvel têm melhor desempenho de domínio de freqüência e podem ser úteis nestas aplicações de domínio misto. Os filtros médios móveis de passagem múltipla envolvem passar o sinal de entrada através de um filtro médio móvel duas ou mais vezes. A Figura 15-3a mostra o kernel geral do filtro resultante de uma, duas e quatro passagens. Duas passagens equivalem a usar um kernel de filtro triangular (um kernel de filtro retangular convolvido com ele próprio). Após quatro ou mais passagens, o kernel de filtro equivalente parece um Gaussiano (lembre-se do Teorema do Limite Central). Conforme mostrado em (b), as passagens múltiplas produzem uma resposta de passo em forma de S, em comparação com a linha reta da única passagem. As respostas de freqüência em (c) e (d) são dadas pela Eq. 15-2 multiplicado por si mesmo por cada passagem. Ou seja, cada vez que a convolução do domínio resulta em uma multiplicação dos espectros de freqüência. A Figura 15-4 mostra a resposta de freqüência de dois outros familiares do filtro de média móvel. Quando um Gaussiano puro é usado como um kernel de filtro, a resposta de freqüência também é gaussiana, conforme discutido no Capítulo 11. O gaussiano é importante porque é a resposta de impulso de muitos sistemas naturais e manmade. Por exemplo, um breve pulso de luz entrando em uma longa linha de transmissão de fibra óptica sairá como um pulso gaussiano, devido aos diferentes caminhos captados pelos fótons dentro da fibra. O kernel de filtro gaussiano também é usado extensivamente no processamento de imagens porque possui propriedades únicas que permitem rápidas ondulações bidimensionais (ver Capítulo 24). A segunda resposta de freqüência na Fig. 15-4 corresponde ao uso de uma janela Blackman como kernel de filtro. (A janela do termo não tem significado aqui é simplesmente parte do nome aceito desta curva). A forma exata da janela Blackman é dada no Capítulo 16 (Eq. 16-2, Fig. 16-2) no entanto, parece muito com um gaussiano. Como estes parentes do filtro de média móvel melhor do que o filtro de média móvel em si. Três maneiras: primeiro e mais importante, esses filtros têm melhor atenuação de parada do que o filtro de média móvel. Em segundo lugar, os grãos de filtro se afilam a uma amplitude menor perto das extremidades. Lembre-se de que cada ponto no sinal de saída é uma soma ponderada de um grupo de amostras da entrada. Se o kernel do filtro diminui, as amostras no sinal de entrada que estão mais distantes recebem menos peso do que as próximas. Em terceiro lugar, as respostas passo a passo são curvas suaves, em vez da linha direta abrupta da média móvel. Estes últimos dois geralmente são de benefício limitado, embora você possa encontrar aplicativos onde eles são vantagens genuínas. O filtro de média móvel e seus parentes são quase iguais em reduzir o ruído aleatório enquanto mantém uma resposta passo a passo. A ambigüidade reside na forma como o tempo de subida da resposta passo é medido. Se o tempo de subida for medido de 0 a 100 da etapa, o filtro médio móvel é o melhor que você pode fazer, como mostrado anteriormente. Em comparação, medir o tempo de subida de 10 a 90 torna a janela Blackman melhor do que o filtro de média móvel. O argumento é que isso é apenas dificuldades teóricas consideram esses filtros iguais neste parâmetro. A maior diferença nesses filtros é a velocidade de execução. Usando um algoritmo recursivo (descrito em seguida), o filtro de média móvel funcionará como um raio em seu computador. Na verdade, é o filtro digital mais rápido disponível. Várias passagens da média móvel serão correspondentemente mais lentas, mas ainda muito rápidas. Em comparação, os filtros gaussianos e negros são incrivelmente lentos, porque devem usar convolução. Acho um fator de dez vezes o número de pontos no kernel do filtro (com base na multiplicação sendo cerca de 10 vezes mais lento do que a adição). Por exemplo, espere que um gaussiano de 100 pontos seja 1000 vezes mais lento do que uma média móvel usando recursão. Estou trabalhando em um robô móvel controlado através de um link sem fio de 2,4 GHz. O receptor está conectado ao Arduino Uno que serve a bordo como o controlador principal . O canal de entrada mais crítico (e principal) proveniente do receptor produz um sinal muito ruidoso, o que leva a muitas pequenas mudanças na saída dos atuadores, mesmo que não sejam necessários. Estou à procura de bibliotecas que possam realizar um alisamento eficiente. Existem algumas bibliotecas de suficiência de sinal disponíveis para o Arduino (Uno), solicitado em 16 de fevereiro às 13:57. Creio que vejo muitas picos de ruído de amostra única em seu sinal ruidoso. O filtro mediano faz melhor para se livrar de espigas de ruído de amostra única do que qualquer filtro linear. (É melhor do que qualquer filtro passa-baixa, média móvel, média móvel ponderada, etc. em termos de seu tempo de resposta e sua capacidade de ignorar esses outliers de picos de ruído de amostra única). Existem, de fato, muitas bibliotecas de alívio de sinais para o Arduino, muitas das quais incluem um filtro mediano. Bibliotecas de sinalização de sinal no arduino. cc: bibliotecas de suavização de sinal no github: Alguma coisa assim funciona no seu robô (A mediana de 3 requer muito pouca energia da CPU e, portanto, rápida): você poderia filtrar isso digitalmente usando um baixo Filtro de passagem: mude o 0,99 para alterar a freqüência de corte (mais perto de 1,0 é menor freqüência). A expressão real desse valor é exp (-2piffs) onde f é a frequência de corte desejada e fs é a frequência em que os dados são amostrados. Outro tipo de filtro digital é um filtro de eventos. Funciona bem em dados que tem valores abertos, e. 9,9,8,10,9,25,9. Um filtro de eventos retorna o valor mais freqüente. Estatisticamente este é o modo. As médias estatísticas, como Média, Modo etc., podem ser calculadas usando a Biblioteca Média Arduino. Um exemplo retirado da página da Biblioteca Arduino referida: Uma das principais aplicações para a placa Arduino é a leitura e registro dos dados do sensor. Por exemplo, um monitora a pressão a cada segundo do dia. Como altas taxas de amostragem muitas vezes geram picos nos gráficos, um também quer ter uma média das medidas. Como as medidas não são estáticas no tempo, o que muitas vezes precisamos é uma média em execução. Esta é a média de um determinado período e muito valioso quando se faz análise de tendências. A forma mais simples de uma média em execução pode ser feita por código que se baseia na média anterior: se não quiser usar matemática de ponto flutuante - como isso ocupa memória e diminui a velocidade - pode-se fazer o mesmo completamente no domínio inteiro. A divisão por 256 no código da amostra é um shift-right 8, que é mais rápido do que dizer divisão por e. 100. Isso é verdade para cada poder de 2 como divisor e um só deve cuidar a soma dos pesos é igual à potência de 2. E é claro que se deve cuidar que não haja transbordamento intermediário (considere usar sem assinatura longa) Se você precisar Uma média de corrida mais precisa, in concreto das últimas 10 medidas, você precisa de uma matriz (ou lista vinculada) para mantê-las. Esta matriz funciona como um buffer circular e com cada nova medida, a mais antiga é removida. A média de corrida é calculada como a soma de todos os elementos divididos pelo número de elementos na matriz. O código para a média em execução será algo assim: Desvantagem deste código é que a matriz para manter todos os valores pode se tornar bastante grande. Se você tem uma medida por segundo e quer uma média corrente por minuto, você precisa de uma série de 60, uma média por hora precisaria de uma matriz de 3600. Isso não poderia ser feito dessa maneira em um Arduino, pois ele só possui 2K de RAM. No entanto, ao construir uma média de 2 estágios, pode ser abordado bastante bem (aviso: não para todas as medidas). No código psuedo: Como uma nova matriz estática interna é necessária para cada função runningAverage, isso grita para ser implementado como uma classe. Biblioteca RunningAverage A biblioteca runningAverage faz uma classe da função acima para que ela possa ser usada várias vezes em um esboço. Desacopla a função add () e avg () para ser um pouco mais flexível, e. Pode-se chamar a média várias vezes sem adicionar nada. Observe que todas as instâncias da classe adicionam sua própria matriz para armazenar medidas, e isso aumenta o uso da memória. A interface da classe é mantida tão pequena quanto possível. Nota: com a versão 0.2 os nomes dos métodos são todos mais descritivos. Um pequeno esboço mostra como ele pode ser usado. Um gerador aleatório é usado para imitar um sensor. Na configuração (), o myRA é limpo para que possamos começar a adicionar novos dados. Em loop () primeiro, um número aleatório é gerado e convertido em um flutuador para ser adicionado ao myRA. Em seguida, o runningAverage é impresso na porta serial. Pode-se também exibi-lo em algum LCD ou enviar por ethernet, etc. Quando são adicionados 300 itens, o myRA está limpo para começar de novo. Para usar a biblioteca, faça uma pasta nas suas LISTAS SKETCHBOOKPATH com o nome RunningAverage e coloque o. h e. cpp lá. Opcionalmente, faça um subdiretório de exemplos para colocar o aplicativo de exemplo. 2011-01-30: versão inicial 2011-02-28: destrutor faltando fixo no arquivo. h 2011-02-28: construtor padrão removido 2012--. TrimValue () Yuval Naveh adicionou trimValue (encontrado na web) 2012-11-21: refatorado 2012-12-30: adicionado fillValue () refatorado para publicação 2014-07-03: código de proteção de memória adicionado - se a matriz interna não puder ser alocada tamanho Torna-se 0. Isso é para resolver o problema descrito aqui - forum. arduino. ccindex. phptopic50473.msg1790086msg1790086 - Teste extensivamente. Classe Template RunningAverage. h RunningAverage. cpp

Comments

Popular posts from this blog

Dividendos Sobre Opções De Compra De Ações

Trading System Metastock

Estratégias Globais De Negociação Aqr