Suavização Da Média Móvel Exponencial
Previsão por técnicas de suavização Este site faz parte dos objetos de aprendizado de E-Labs JavaScript para a tomada de decisões. Outro JavaScript nesta série é categorizado em diferentes áreas de aplicativos na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente à coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são o alisamento. Essas técnicas, quando aplicadas corretamente, revelam mais claramente as tendências subjacentes. Digite as séries temporais em ordem de linha em sequência, a partir do canto superior esquerdo e o (s) parâmetro (s), e clique no botão Calcular para obter uma previsão em um período de antecedência. As caixas em branco não estão incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados, use a tecla Tab na seta ou entre as chaves. Características das séries temporais, que podem ser reveladas examinando seu gráfico. Com os valores previstos, e o comportamento residual, modelagem de previsão de condição. Médias móveis: as médias médias classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados para filtrar o ruído branco aleatório dos dados, para tornar as séries temporais mais suaves ou mesmo para enfatizar certos componentes informativos contidos nas séries temporais. Suavização exponencial: Este é um esquema muito popular para produzir uma série de tempo suavizada. Considerando que, nas Médias móveis, as observações passadas são ponderadas de forma igual, Suavização exponencial atribui pesos exponencialmente decrescentes à medida que a observação envelhece. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Suavizado Exponencial Duplo é melhor nas tendências de manuseio. O Suavização Exponencial Triplo é melhor em lidar com as tendências da parábola. Uma média móvel ponderada exponencialmente com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,04878. Holmes Linear Exponential Suavização: Suponha que as séries temporais não sejam sazonais, mas que mostram a tendência de exibição. O método Holts estima tanto o nível atual quanto a tendência atual. Observe que a média móvel simples é um caso especial do suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados empresariais, um parâmetro Alpha menor que 0.40 geralmente é eficaz. No entanto, pode-se realizar uma busca em grade do espaço dos parâmetros, com 0,1 a 0,9, com incrementos de 0,1. Então, o melhor alfa tem o menor erro absoluto médio (erro MA). Como comparar vários métodos de suavização: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla é o uso de comparação visual de várias previsões para avaliar a precisão e escolher entre os vários métodos de previsão. Nesta abordagem, um deve traçar (usando, por exemplo, Excel) no mesmo gráfico, os valores originais de uma variável de séries temporais e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões passadas por técnicas de suavização JavaScript para obter os valores de previsão passados com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ideais ótimos, ou mesmo próximos, por testes e erros para os parâmetros. O alisamento exponencial único enfatiza a perspectiva de curto alcance que define o nível para a última observação e baseia-se na condição de que não haja nenhuma tendência. A regressão linear, que se adapta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa o longo alcance, que está condicionado à tendência básica. O alisamento exponencial linear Holts captura informações sobre a tendência recente. Os parâmetros no modelo Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande e as tendências-parâmetro devem ser aumentadas se a direção recente da tendência é suportada pelos fatores causais. Previsão de curto prazo: observe que cada JavaScript nesta página fornece uma previsão de um passo a frente. Para obter uma previsão em duas etapas. Simplesmente adicione o valor previsto ao final de seus dados da série temporal e clique no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões necessárias a curto prazo. Dados de mobilidade removem variações aleatórias e mostram tendências e componentes cíclicos. Inerente à coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavização. Esta técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de suavização Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Em primeiro lugar, investigaremos alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico entrega em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média calculada ou a média dos dados 10. O gerente decide usar isso como a estimativa de despesas de um fornecedor típico. Isto é uma estimativa boa ou ruim O erro quadrático médio é uma maneira de julgar o quão bom é um modelo. Calculamos o erro quadrático médio. O valor do erro verdadeiro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados MSE, por exemplo, os resultados são: Erros de Erro e Esquadrão A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência. Um olhar no gráfico abaixo mostra claramente que não devemos fazer isso. A média pesa todas as observações passadas igualmente. Em resumo, afirmamos que a média ou média simples de todas as observações passadas é apenas uma estimativa útil para a previsão quando não há tendências. Se houver tendências, use diferentes estimativas que levem em consideração a tendência. A média pesa igualmente todas as observações passadas. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra frac suma esquerda (fração direita) x1 esquerda (fração direita) x2,. , Esquerda (fratura direita) xn. Os (a esquerda (fratura direita)) são os pesos e, claro, somam para 1. Média móvel expressiva - EMA BREAKING DOWN Média móvel exponencial - EMA As EMA de 12 e 26 dias são as médias de curto prazo mais populares, E eles são usados para criar indicadores como a divergência de convergência média móvel (MACD) eo oscilador de preço percentual (PPO). Em geral, as EMAs de 50 e 200 dias são usadas como sinais de tendências de longo prazo. Os comerciantes que empregam análises técnicas consideram as médias móveis muito úteis e perspicazes quando aplicadas corretamente, mas criam havoc quando usadas de forma incorreta ou são mal interpretadas. Todas as médias móveis comumente usadas na análise técnica são, por sua própria natureza, indicadores de atraso. Consequentemente, as conclusões extraídas da aplicação de uma média móvel a um gráfico de mercado específico devem ser confirmar um movimento de mercado ou indicar sua força. Muitas vezes, no momento em que uma linha de indicador de média móvel fez uma mudança para refletir um movimento significativo no mercado, o ponto ótimo de entrada no mercado já passou. Um EMA serve para aliviar esse dilema até certo ponto. Como o cálculo EMA coloca mais peso sobre os dados mais recentes, ele abraça a ação do preço um pouco mais apertado e, portanto, reage mais rápido. Isso é desejável quando um EMA é usado para derivar um sinal de entrada comercial. Interpretando o EMA Como todos os indicadores de média móvel, eles são muito mais adequados para mercados de tendências. Quando o mercado está em uma tendência de alta forte e sustentada. A linha indicadora EMA também mostrará uma tendência de alta e vice-versa para uma tendência descendente. Um comerciante vigilante não só prestará atenção na direção da linha EMA, mas também a relação da taxa de mudança de uma barra para a próxima. Por exemplo, como a ação de preço de uma forte tendência de alta começa a achatar e reverter, a taxa de troca de EMAs de uma barra para a próxima começará a diminuir até que a linha do indicador aplique e a taxa de mudança seja zero. Devido ao efeito de atraso, neste ponto, ou mesmo algumas barras anteriores, a ação de preço já deveria ter sido revertida. Portanto, segue que a observação de uma diminuição consistente na taxa de mudança da EMA poderia ser usada como um indicador que poderia contrariar ainda mais o dilema causado pelo efeito de atraso das médias móveis. Os usos comuns das EMA EMAs são comumente usados em conjunto com outros indicadores para confirmar movimentos significativos no mercado e avaliar sua validade. Para os comerciantes que comercializam mercados intradía e de rápido movimento, o EMA é mais aplicável. Muitas vezes, os comerciantes usam EMAs para determinar um viés de negociação. Por exemplo, se um EMA em um gráfico diário mostra uma forte tendência ascendente, uma estratégia de comerciantes intradía pode ser trocar apenas do lado longo em um gráfico intradía.
Comments
Post a Comment